A Glimm type functional for a special Jin–Xin relaxation model

  • Stefano Bianchini

    SISSA-ISAS, via Beirut 2-4, 34014 Trieste, Italy

Abstract

We consider a special case of the Jin–Xin relaxation systems

We assume that the integral curves of the eigenvectors of are straight lines.

In this setting we prove that for every initial data with sufficiently small total variation the solution of () is well defined for all , and its total variation satisfies a uniform bound, independent of . Moreover, as tends to , the solutions converge to a unique limit : is the unique entropic solution of the corresponding hyperbolic system and for all , a.e. .

The proofs rely on the introduction of a new functional for the solutions of (), corresponding to the Glimm interaction potential for the approaching waves of different families.

Résumé

Nous considérons un cas special des systèmes de relaxation

Nous supposons que les courbes intégrales des vecteurs propres de sont des droites.

Sous ces hypothèses, nous prouvons que pour chaques données initiales avec une variation totale suffisamment petite la solution de () est bien définie pour tout , et sa variation totale satisfait une borne uniforme, indépendante de . De plus, quand tend vers , les solutions convergent vers une unique limite : est l’unique solution entropique du système hyperbolique correspondant et pour tout , p.p. . Les preuves sont basées sur l’introduction d’une nouvelle fonctionnelle pour les solutions de (), correspondant au potential d’interaction de Glimm pour les vagues approchantes des différentes familles.

Cite this article

Stefano Bianchini, A Glimm type functional for a special Jin–Xin relaxation model. Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), no. 1, pp. 19–42

DOI 10.1016/S0294-1449(00)00124-4