Large solutions to elliptic equations involving fractional Laplacian

  • Huyuan Chen

    Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, PR China; Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, UMR2071 CNRS-UChile, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile
  • Patricio Felmer

    Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, UMR2071 CNRS-UChile, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile
  • Alexander Quaas

    Departamento de Matemática, Universidad Técnica Federico Santa María Casilla: V-110, Avda. España 1680, Valparaíso, Chile

Abstract

The purpose of this paper is to study boundary blow up solutions for semi-linear fractional elliptic equations of the form

where , is an open bounded domain of , , the operator with is the fractional Laplacian and is a continuous function which satisfies some appropriate conditions. We obtain that problem (0.1) admits a solution with boundary behavior like , when , for some , and has infinitely many solutions with boundary behavior like , when . Moreover, we also obtained some uniqueness and non-existence results for problem (0.1).

Cite this article

Huyuan Chen, Patricio Felmer, Alexander Quaas, Large solutions to elliptic equations involving fractional Laplacian. Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), no. 6, pp. 1199–1228

DOI 10.1016/J.ANIHPC.2014.08.001