A one-dimensional symmetry result for a class of nonlocal semilinear equations in the plane

  • Yannick Sire

    Aix Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille, UMR 7373, 13453 Marseille, France
  • François Hamel

    Aix Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille, UMR 7373, 13453 Marseille, France
  • Xavier Ros-Oton

    The University of Texas at Austin, Department of Mathematics, 2515 Speedway, Austin, TX 78751, USA
  • Enrico Valdinoci

    Weierstraß Institute, Mohrenstraße 39, 10117 Berlin, Germany; Università di Milano, Dipartimento di Matematica Federigo Enriques, Via Cesare Saldini 50, 20133 Milano, Italy; The University of Melbourne, Department of Mathematics and Statistics, Parkville, VIC 3052, Australia

Abstract

We consider entire solutions to in , where is a nonlocal operator with translation invariant, even and compactly supported kernel . Under different assumptions on the operator , we show that monotone solutions are necessarily one-dimensional. The proof is based on a Liouville type approach. A variational characterization of the stability notion is also given, extending our results in some cases to stable solutions.

Cite this article

Yannick Sire, François Hamel, Xavier Ros-Oton, Enrico Valdinoci, A one-dimensional symmetry result for a class of nonlocal semilinear equations in the plane. Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), no. 2, pp. 469–482

DOI 10.1016/J.ANIHPC.2016.01.001