A one-dimensional symmetry result for a class of nonlocal semilinear equations in the plane
Yannick Sire
Aix Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille, UMR 7373, 13453 Marseille, FranceFrançois Hamel
Aix Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille, UMR 7373, 13453 Marseille, FranceXavier Ros-Oton
The University of Texas at Austin, Department of Mathematics, 2515 Speedway, Austin, TX 78751, USAEnrico Valdinoci
Weierstraß Institute, Mohrenstraße 39, 10117 Berlin, Germany; Università di Milano, Dipartimento di Matematica Federigo Enriques, Via Cesare Saldini 50, 20133 Milano, Italy; The University of Melbourne, Department of Mathematics and Statistics, Parkville, VIC 3052, Australia
Abstract
We consider entire solutions to in , where is a nonlocal operator with translation invariant, even and compactly supported kernel . Under different assumptions on the operator , we show that monotone solutions are necessarily one-dimensional. The proof is based on a Liouville type approach. A variational characterization of the stability notion is also given, extending our results in some cases to stable solutions.
Cite this article
Yannick Sire, François Hamel, Xavier Ros-Oton, Enrico Valdinoci, A one-dimensional symmetry result for a class of nonlocal semilinear equations in the plane. Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), no. 2, pp. 469–482
DOI 10.1016/J.ANIHPC.2016.01.001