Équation de la chaleur et réflections multiples

  • C. Perret

    Laboratoire L.M.C.-I.M.A.G., Tour I.R.M.A., B.P. n° 53X, 38041 Grenoble Cedex
  • P. Witomski

    Laboratoire L.M.C.-I.M.A.G., Tour I.R.M.A., B.P. n° 53X, 38041 Grenoble Cedex

Abstract

The model we are presenting here is a simplified version which arises from the numerical simulation of the crystal growth ([3], [6]). We are interested in the resolution of the heat equation in a domain with thermal exchanges by radiation on a part of the boundary of . These exchanges exist inside a closed cavity . If we take account of all the reflections we obtain a nonlinear Neumann’s condition with temperatures coupled on . The method using here to prove the existence of a solution to this problem is based on the utilization of lower and upper solutions. We obtain the unicity by a maximum principle.

Résumé

Le modèle que nous présentons ici est une version simplifiée tirée de la simulation numérique d’un procédé de cristallogénèse ([3], [6]). On s’intéresse à la résolution de l’équation de la chaleur dans un domaine avec des échanges thermiques par rayonnement sur une partie de la frontière de . Ces échanges se font à l’intérieur d’une enceinte fermée . La prise en compte de toutes les réflections donne un couplage des températures et une condition de Neumann non linéaire sur . Cette non linéarité n’est pas monotone. On utilise la méthode des sous et sur solutions pour montrer l’existence d’une solution minimale et d’une solution maximale puis on établit l’unicité de la solution avec un principe du maximum.

Cite this article

C. Perret, P. Witomski, Équation de la chaleur et réflections multiples. Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), no. 6, pp. 677–689

DOI 10.1016/S0294-1449(16)30254-2