Meilleures constantes dans le théorème d’inclusion de Sobolev
Emmanuel Hebey
9, rue Villehardouin, 75003 Paris, France et Université de Cergy-Pontoise, Dept. de Mathématiques, avenue du Parc, 8 le Campus, 95033 Cergy-Pontoise Cedex, FranceMichel Vaugon
58, rue de la Mare-Aubry, 02400 Château-Thierry, France et Université Paris 6, Dept. de Mathématiques, 4, place Jussieu, 75252 Paris Cedex 05, France
Abstract
In 1976, Aubin stated the following conjecture: for any compact riemannian manifold of dimension , the best constant corresponding to the imbedding of in is attained. We prove that the conjecture is true.
Résumé
En 1976, Aubin énonçait la conjecture suivante : pour toute variété riemannienne compacte de dimension , la meilleure constante de l’inclusion de dans est atteinte. On montre que la conjecture est vraie.
Cite this article
Emmanuel Hebey, Michel Vaugon, Meilleures constantes dans le théorème d’inclusion de Sobolev. Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), no. 1, pp. 57–93
DOI 10.1016/S0294-1449(16)30097-X