On the global Cauchy problem for some non linear Schrödinger equations
J. Ginibre
Laboratoire de Physique Théorique et Hautes Énergies , Université de Paris-Sud, 91405 Orsay, FranceG. Velo
Dipartimento di Fisica, Università di Bologna and INFN, Sezione di Bologna, Italy
Abstract
We study the Cauchy problem for a class of non linear Schrödinger equations in space time dimension . We look for solutions which are continuous functions of time with values in the Sobolev space , . Under suitable assumptions on the interactions, we prove in particular the existence of global solutions for . The global existence proof breaks down for .
Résumé
On étudie le problème de Cauchy pour une classe d’équations de Schrödinger non linéaires en dimension d’espace temps. On cherche des solutions fonctions continues du temps à valeurs dans l’espace de Sobolev ), . Sous des hypothèses convenables sur les interactions, on prouve en particulier l’existence de solutions globales pour . La démonstration d’existence globale ne s’applique pas pour .
Cite this article
J. Ginibre, G. Velo, On the global Cauchy problem for some non linear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, pp. 309–323
DOI 10.1016/S0294-1449(16)30425-5