Scaling limits and regularity results for a class of Ginzburg–Landau systems

  • Robert L. Jerrard

    Department of Mathematics University of Illinois, 1409 West Green Street Urbana, IL 61801 USA
  • Halil Mete Soner

    Department of Mathematics Carnegie Mellon University Pittsburgh, PA 15213, USA

Abstract

We study a class of parabolic systems which includes the Ginzburg–Landau heat flow equation,

for , as well as some natural quasilinear generalizations for functions taking values in , .

We prove that for solutions of the general system, the limiting support as of the energy measure is a codimension manifold which evolves via mean curvature.

We also establish some local regularity results which hold uniformly in . In particular, we establish a small-energy regularity theorem for the general system, and we prove a stronger regularity result for the usual Ginzburg–Landau equation on .

Résumé

Nous étudions une classe de systèmes paraboliques qui comprennent l’equation de chaleur Ginzburg–Landau,

pour , ainsi que des généralisations quasilinéaires pour des fonctions prenant leurs valeurs dans , .

Nous prouvons que, pour les solutions du système général, le support limite (lorsque ) de mèsure d’énergie est une varieté de codimension qui évolue selon sa courbure moyenne.

Nous établissons en addition quelques resultats de regularité locale, qui sont valides uniformement en .

Cite this article

Robert L. Jerrard, Halil Mete Soner, Scaling limits and regularity results for a class of Ginzburg–Landau systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999), no. 4, pp. 423–466

DOI 10.1016/S0294-1449(99)80024-9