Uniqueness of the infinite noodle
Nicolas Curien
Université Paris-Sud, Orsay, FranceGady Kozma
Weizmann Institute of Science, Rehovot, IsraelVladas Sidoravicius
Courant Institute of Mathematical Sciences, New York, USA and NYU at Shanghai, ChinaLaurent Tournier
Université Paris 13, Sorbonne Paris Cité, France
Abstract
Consider the graph obtained by superposition of an independent pair of uniform infinite non-crossing perfect matchings of the set of integers. We prove that this graph contains at most one infinite path. Several motivations are discussed.
Cite this article
Nicolas Curien, Gady Kozma, Vladas Sidoravicius, Laurent Tournier, Uniqueness of the infinite noodle. Ann. Inst. Henri Poincaré Comb. Phys. Interact. 6 (2019), no. 2, pp. 221–238
DOI 10.4171/AIHPD/70