Ping-pong partitions and locally discrete groups of real-analytic circle diffeomorphisms, II: Applications
Sébastien Alvarez
Universidad de la República, Montevideo, UruguayPablo G. Barrientos
Universidade Federal Fluminense, Rio de Janeiro, BrazilDmitry Filimonov
HSE University, Moscow, RussiaVictor Kleptsyn
CNRS, Institut de Récherche Mathématique de Rennes, FranceDominique Malicet
Université Gustave Eiffel, Champs-sur-Marne, FranceCarlos Meniño Cotón
CITMAGA; Instituto Investigaciones Tecnológicas, Santiago de Compostela; Universidade de Vigo, SpainMichele Triestino
Université de Bourgogne, Dijon, France
Abstract
In the first part of this work we have established an efficient method to obtain a topological classification of locally discrete, finitely generated, virtually free subgroups of real-analytic circle diffeomorphisms. In this second part we describe several consequences, among which the solution (within this setting) to an old conjecture by P. R. Dippolito [Ann. Math. 107 (1978), 403–453] that actions with invariant Cantor sets must be semi-conjugate to piecewise linear actions. In addition, we exhibit examples of locally discrete, minimal actions which are not of Fuchsian type.
Cite this article
Sébastien Alvarez, Pablo G. Barrientos, Dmitry Filimonov, Victor Kleptsyn, Dominique Malicet, Carlos Meniño Cotón, Michele Triestino, Ping-pong partitions and locally discrete groups of real-analytic circle diffeomorphisms, II: Applications. Comment. Math. Helv. 98 (2023), no. 4, pp. 643–691
DOI 10.4171/CMH/562