Rectifiability and upper Minkowski bounds for singularities of harmonic -valued maps
Camillo De Lellis
Universität Zürich, SwitzerlandAndrea Marchese
Universität Zürich, SwitzerlandEmanuele Spadaro
Universität Leipzig, GermanyDaniele Valtorta
Universität Zürich, Switzerland
Abstract
In this article we prove that the singular set of Dirichlet-minimizing -valued functions is countably -rectifiable and we give upper bounds for the -dimensional Minkowski content of the set of singular points with multiplicity .
Cite this article
Camillo De Lellis, Andrea Marchese, Emanuele Spadaro, Daniele Valtorta, Rectifiability and upper Minkowski bounds for singularities of harmonic -valued maps. Comment. Math. Helv. 93 (2018), no. 4, pp. 737–779
DOI 10.4171/CMH/449