Embeddable anticonformal automorphisms of Riemann surfaces
Antonio F. Costa
UNED, Madrid, Spain
Abstract
Let S be a Riemann surface and f be an automorphism of finite order of S. We call f embeddable if there is a conformal embedding such that is the restriction to e(S) of a rigid motion. In this paper we show that an anticonformal automorphism of finite order is embeddable if and only if it belongs to one of the topological conjugation classes here described. For conformal automorphisms a similar result was known by R.A. Rüedy [R3].
Cite this article
Antonio F. Costa, Embeddable anticonformal automorphisms of Riemann surfaces. Comment. Math. Helv. 72 (1997), no. 2, pp. 203–215
DOI 10.1007/S000140050012