Restriction map in a regular reduction of SU(n)2g\mathbf{SU}(n)^{2g}

  • S. Racanière

    Université Louis Pasteur, Strasbourg, France


The quasi-Hamiltonian reduction of SU(n)2g\mathbf{SU}(n)^{2g} at a regular value, in the centre of SU(n), of the moment map is isomorphic to a moduli-space of semi-stable vector bundles over a Riemann surface. We describe the restriction map from the equivariant cohomology of SU(n)2g\mathbf{SU}(n)^{2g} to the cohomology of the moduli space in terms of natural multiplicative generators of these cohomologies.

Cite this article

S. Racanière, Restriction map in a regular reduction of SU(n)2g\mathbf{SU}(n)^{2g}. Comment. Math. Helv. 78 (2003), no. 2, pp. 394–417

DOI 10.1007/S000140300017