Bredon homology of partition complexes
K. Lesh
Department of Mathematics Union College Schenectady NY 12309 USAG. Z. Arone
Kerchof Hall Department of Mathematics U. of Virginia University of Notre Dame P.O. Box 400137 Notre Dame Charlottesville IN 46556 USA VA 22904 USAW. G. Dwyer
Kerchof Hall Department of Mathematics U. of Virginia University of Notre Dame P.O. Box 400137 Notre Dame Charlottesville IN 46556 USA VA 22904 USA

Abstract
We prove that the Bredon homology or cohomology of the partition complex with fairly general coefficients is either trivial or computable in terms of constructions with the Steinberg module. The argument involves a theory of Bredon homology and cohomology approximation.
Cite this article
K. Lesh, G. Z. Arone, W. G. Dwyer, Bredon homology of partition complexes. Doc. Math. 21 (2016), pp. 1227–1268
DOI 10.4171/DM/X1