The Hirzebruch-Mumford volume for the orthogonal group and applications
V. Gritsenko
Université Lille 1 Institut für UFR de Mathématiques Algebraische Geometrie F-59655 Villeneuve d'Ascq, Leibniz Universität Hannover Cedex D-30060 Hannover France GermanyK. Hulek
Université Lille 1 Institut für UFR de Mathématiques Algebraische Geometrie F-59655 Villeneuve d'Ascq, Leibniz Universität Hannover Cedex D-30060 Hannover France GermanyG.K. Sankaran
Department of Mathematical Sciences University of Bath Bath BA2 7AY England
Abstract
In this paper we derive an explicit formula for the Hirzebruch-Mumford volume of an indefinite lattice of rank . If is an arithmetic subgroup and has signature , then an application of Hirzebruch-Mumford proportionality allows us to determine the leading term of the growth of the dimension of the spaces of cusp forms of weight , as goes to infinity. We compute this in a number of examples, which are important for geometric applications.
Cite this article
V. Gritsenko, K. Hulek, G.K. Sankaran, The Hirzebruch-Mumford volume for the orthogonal group and applications. Doc. Math. 12 (2007), pp. 215–241
DOI 10.4171/DM/224