Profinite homotopy theory
Gereon Quick
Mathematisches Institut Universität Münster Einsteinstr. 62 D-48149 Münster
Abstract
We construct a model structure on simplicial profinite sets such that the homotopy groups carry a natural profinite structure. This yields a rigid profinite completion functor for spaces and pro-spaces. One motivation is the étale homotopy theory of schemes in which higher profinite étale homotopy groups fit well with the étale fundamental group which is always profinite. We show that the profinite étale topological realization functor is a good object in several respects.
Cite this article
Gereon Quick, Profinite homotopy theory. Doc. Math. 13 (2008), pp. 585–612
DOI 10.4171/DM/255