Purity results for -divisible groups and Abelian schemes over regular bases of mixed characteristic
Adrian Vasiu
P. O. Box 6000, Department of Fakultät für Mathematik Mathematical Sciences Universität Bielefeld Binghamton University P.O. Box 100 131 Binghamton, New York 13902- D-33 501 Bielefeld 6000 Germany U.S.AThomas Zink
P. O. Box 6000, Department of Fakultät für Mathematik Mathematical Sciences Universität Bielefeld Binghamton University P.O. Box 100 131 Binghamton, New York 13902- D-33 501 Bielefeld 6000 Germany U.S.A
Abstract
Let be a prime. Let be a regular local ring of mixed characteristic and absolute index of ramification . We provide general criteria of when each abelian scheme over extends to an abelian scheme over . We show that such extensions always exist if , exist in most cases if , and do not exist in general if . The case implies the uniqueness of integral canonical models of Shimura varieties over a discrete valuation ring of mixed characteristic and index of ramification at most . This leads to large classes of examples of Néron models over . If and index , the examples are new.
Cite this article
Adrian Vasiu, Thomas Zink, Purity results for -divisible groups and Abelian schemes over regular bases of mixed characteristic. Doc. Math. 15 (2010), pp. 571–599
DOI 10.4171/DM/307