Stable maps and Chow groups
D. Huybrechts
Mathematisches Institut Mathematisches Institut Universität Bonn Universität Bonn Endenicher Allee 60 Endenicher Allee 60 53115 Bonn 53115 Bonn Germany GermanyM. Kemeny
Mathematisches Institut Mathematisches Institut Universität Bonn Universität Bonn Endenicher Allee 60 Endenicher Allee 60 53115 Bonn 53115 Bonn Germany Germany
Abstract
According to the Bloch–Beilinson conjectures, an automorphism of a K3 surface that acts as the identity on the transcendental lattice should act trivially on . We discuss this conjecture for symplectic involutions and prove it in one third of all cases. The main point is to use special elliptic K3 surfaces and stable maps to produce covering families of elliptic curves on the generic K3 surface that are invariant under the involution.
Cite this article
D. Huybrechts, M. Kemeny, Stable maps and Chow groups. Doc. Math. 18 (2013), pp. 507–517
DOI 10.4171/DM/407