Nonarchimedean Bornologies, Cyclic Homology and Rigid Cohomology
Guillermo Cortiñas
Dep. Matemática-IMAS, FCEyN-Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires, ArgentinaJoachim Cuntz
Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, 48149 Münster, GermanyRalf Meyer
Mathematisches Institut, Georg-August Universität Göttingen, Bunsenstrasse3--5, 37073 Göttingen, GermanyGeorg Tamme
Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany

Abstract
Let be a complete discrete valuation ring with residue field and with fraction field of characteristic . We clarify the analysis behind the Monsky-Washnitzer completion of a commutative -algebra using spectral radius estimates for bounded subsets in complete bornological -algebras. This leads us to a functorial chain complex for commutative -algebras that computes Berthelot's rigid cohomology. This chain complex is related to the periodic cyclic homology of certain complete bornological -algebras.
Cite this article
Guillermo Cortiñas, Joachim Cuntz, Ralf Meyer, Georg Tamme, Nonarchimedean Bornologies, Cyclic Homology and Rigid Cohomology. Doc. Math. 23 (2018), pp. 1197–1245
DOI 10.4171/DM/645