Special Subvarieties in Mumford-Tate Varieties

  • Abolfazl Mohajer

    Universität Mainz, Fachbereich 08, Institut für Mathematik, 55099 Mainz, Germany
  • Stefan Müller-Stach

    Universität Mainz, Fachbereich 08, Institut für Mathematik, 55099 Mainz, Germany
  • Kang Zuo

    Universität Mainz, Fachbereich 08, Institut für Mathematik, 55099 Mainz, Germany
Special Subvarieties in Mumford-Tate Varieties cover
Download PDF

This article is published open access.

Abstract

Let X=Γ\DX=\Gamma \backslash D be a Mumford-Tate variety, i.e., a quotient of a Mumford-Tate domain D=G(R)/VD=G(\mathcal{R})/V by a discrete subgroup Γ\Gamma. Mumford-Tate varieties are generalizations of Shimura varieties. We define the notion of a special subvariety YXY \subset X (of Shimura type), and formulate necessary criteria for YY to be special. Our method consists in looking at finitely many compactified special curves CiC_i in YY, and testing whether the inclusion iCiY\bigcup_i C_i \subset Y satisfies certain properties. One of them is the so-called relative proportionality condition. In this paper, we give a new formulation of this numerical criterion in the case of Mumford-Tate varieties XX. In this way, we give necessary and sufficient criteria for a subvariety YY of XX to be a special subvariety of Shimura type in the sense of the André-Oort conjecture. We discuss in detail the important case where X=AgX=A_g, the moduli space of principally polarized abelian varieties.

Cite this article

Abolfazl Mohajer, Stefan Müller-Stach, Kang Zuo, Special Subvarieties in Mumford-Tate Varieties. Doc. Math. 24 (2019), pp. 523–544

DOI 10.4171/DM/687