On localisation of eigenfunctions of the Laplace operator
Michiel van den Berg
University of Bristol, Bristol, UKDorin Bucur
Université Savoie Mont Blanc, Le-Bourget-du-Lac, France
![On localisation of eigenfunctions of the Laplace operator cover](/_next/image?url=https%3A%2F%2Fcontent.ems.press%2Fassets%2Fpublic%2Fimages%2Fserials%2Fcover-emss.png&w=3840&q=90)
Abstract
We prove (i) a simple sufficient geometric condition for localisation of a sequence of first Dirichlet eigenfunctions provided the corresponding Dirichlet Laplacians satisfy a uniform Hardy inequality and (ii) localisation of a sequence of first Dirichlet eigenfunctions for a wide class of elongating horn-shaped domains. We give examples of sequences of simply connected, planar, polygonal domains for which the corresponding sequence of first eigenfunctions with either Dirichlet or Neumann boundary conditions -localise in .
Cite this article
Michiel van den Berg, Dorin Bucur, On localisation of eigenfunctions of the Laplace operator. EMS Surv. Math. Sci. (2025), published online first
DOI 10.4171/EMSS/89