Characterisations of algebraic properties of groups in terms of harmonic functions

  • Matthew C.H. Tointon

    University of Cambridge, UK

Abstract

We prove various results connecting structural or algebraic properties of graphs and groups to conditions on their spaces of harmonic functions. In particular: we show that a group with a finitely supported symmetric measure has a finite-dimensional space of harmonic functions if and only if it is virtually cyclic; we present a new proof of a result of V. Trofimov that an infinite vertex-transitive graph admits a non-constant harmonic function; we give a new proof of a result of T. Ceccherini-Silberstein, M. Coornaert and J. Dodziuk that the Laplacian on an infinite, connected, locally finite graph is surjective; and we show that the positive harmonic functions on a non-virtually nilpotent linear group span an infinite-dimensional space.

Cite this article

Matthew C.H. Tointon, Characterisations of algebraic properties of groups in terms of harmonic functions. Groups Geom. Dyn. 10 (2016), no. 3, pp. 1007–1049

DOI 10.4171/GGD/375