Hyperbolic quotients of projection complexes

  • Matt Clay

    University of Arkansas, Fayetteville, USA
  • Johanna Mangahas

    University at Buffalo, USA
Hyperbolic quotients of projection complexes cover
Download PDF

This article is published open access under our Subscribe to Open model.

Abstract

This paper is a continuation of our previous work with Margalit where we studied group actions on projection complexes. In that paper, we demonstrated sufficient conditions so that the normal closure of a family of subgroups of vertex stabilizers is a free product of certain conjugates of these subgroups. In this paper, we study both the quotient of the projection complex by this normal subgroup and the action of the quotient group on the quotient of the projection complex. We show that under certain conditions the quotient complex is -hyperbolic. Additionally, under certain circumstances, we show that if the original action on the projection complex was a non-elementary WPD action, then so is the action of the quotient group on the quotient of the projection complex. This implies that the quotient group is acylindrically hyperbolic.

Cite this article

Matt Clay, Johanna Mangahas, Hyperbolic quotients of projection complexes. Groups Geom. Dyn. 16 (2022), no. 1, pp. 225–246

DOI 10.4171/GGD/646