On sharp interface limits for diffuse interface models for two-phase flows
Helmut Abels
Universität Regensburg, GermanyDaniel Lengeler
Universität Regensburg, Germany
Abstract
We discuss the sharp interface limit of a diffuse interface model for a two-phase flow of two partly miscible viscous Newtonian fluids of different densities, when a certain parameter related to the interface thickness tends to zero. In the case that the mobility stays positive or tends to zero slower than linearly in we will prove that weak solutions tend to varifold solutions of a corresponding sharp interface model. But, if the mobility tends to zero faster than we will show that certain radially symmetric solutions tend to functions, which will not satisfy the Young-Laplace law at the interface in the limit.
Cite this article
Helmut Abels, Daniel Lengeler, On sharp interface limits for diffuse interface models for two-phase flows. Interfaces Free Bound. 16 (2014), no. 3, pp. 395–418
DOI 10.4171/IFB/324