A nonlocal phase-field model with nonconstant specific heat
Pavel Krejcí
Academy of Sciences, Praha, Czech RepublicElisabetta Rocca
Università degli Studi di Milano, ItalyJürgen Sprekels
Angewandte Analysis und Stochastik, Berlin, Germany
Abstract
We prove the existence, uniqueness, thermodynamic consistency, global boundedness from both above and below, and continuous data dependence for a solution to an integrodifferential model for nonisothermal phase transitions under nonhomogeneous mixed boundary conditions. The specific heat is allowed to depend on the order parameter, and the convex component of the free energy may or may not be singular.
Cite this article
Pavel Krejcí, Elisabetta Rocca, Jürgen Sprekels, A nonlocal phase-field model with nonconstant specific heat. Interfaces Free Bound. 9 (2007), no. 2, pp. 285–306
DOI 10.4171/IFB/165