A Stefan problem for a protocell model with symmetry-breaking bifurcations of analytic solutions
Avner Friedman
Ohio State University, Columbus, USABei Hu
University of Notre Dame, USAJuan José L. Velazques
Universidad Complutense de Madrid, Spain
Abstract
A simple model of a living cell which undergoes processes of growth and dissolution is described as a free boundary problem for a system of two reaction-diffusion equations; the condition on the free boundary is of the Stefan type. The special case of radially symmetric cells was studied in earlier work. This paper is concerned with the existence of symmetry-breaking stationary solutions, i.e. with solutions which are not radially symmetric. It is proved, in the two-dimensional case, that there exist branches of non-radial stationary solutions bifurcating from radially symmetric solutions; indeed, for any mode l, l [ge] 2, there exists a unique bifurcation branch whose free boundary has the form r = Rl + [epsilon] cos l[theta] + [Sigma]n[ge]2 [epsilon]n[lambda]n ([theta]), | [epsilon] | small, with [lambda]n ([theta]) orthogonal to cos l[theta].
Cite this article
Avner Friedman, Bei Hu, Juan José L. Velazques, A Stefan problem for a protocell model with symmetry-breaking bifurcations of analytic solutions. Interfaces Free Bound. 3 (2001), no. 2, pp. 143–199
DOI 10.4171/IFB/37