JournalsifbVol. 4, No. 4pp. 423–435

Parabolic regularization of differential inclusions and the stop operator

  • Jürgen Sprekels

    Angewandte Analysis und Stochastik, Berlin, Germany
  • Pavel Krejčí

    Academy of Sciences, Praha, Czech Republic
Parabolic regularization of differential inclusions and the stop operator cover
Download PDF

Abstract

Parabolic differential inclusions with convex constraints in a finite-dimensional space are considered with a small 'diffusion' coefficient [egr] at the elliptic term. This problem arises for instance in multicomponent phase-field systems. We prove the strong convergence of solutions as [egr] [rarr] 0 to the solution of the singular limit equation and show the connection to elementary hysteresis operators.

Cite this article

Jürgen Sprekels, Pavel Krejčí, Parabolic regularization of differential inclusions and the stop operator. Interfaces Free Bound. 4 (2002), no. 4, pp. 423–435

DOI 10.4171/IFB/68