Landau–Ginzburg potentials via projective representations
Daniel Labardini-Fragoso
Universidad Nacional Autónoma de México, Ciudad de México, MexicoBea de Laporte
Universität zu Köln, Köln, Germany
Abstract
We interpret the Landau–Ginzburg potentials associated to Gross–Hacking–Keel–Kontsevich’s partial compactifications of cluster varieties as -polynomials of projective representations of Jacobian algebras. Along the way, we show that both the finite-dimensional projective and the finite-dimensional injective representations of Jacobian algebras are well behaved under Derksen–Weyman–Zelevinsky’s mutations of representations.
Cite this article
Daniel Labardini-Fragoso, Bea de Laporte, Landau–Ginzburg potentials via projective representations. J. Comb. Algebra (2024), published online first
DOI 10.4171/JCA/98