Bounded cohomology of lattices in higher rank Lie groups
Marc Burger
ETH Zürich, SwitzerlandNicolas Monod
Ecole Polytechnique Fédérale de Lausanne, Switzerland
Abstract
We prove that the natural map from bounded to usual cohomology is injective if is an irreducible cocompact lattice in a higher rank Lie group. This result holds also for nontrivial unitary coefficients, and implies finiteness results for : the stable commutator length vanishes and any -action on the circle is almost trivial. We introduce the continuous bounded cohomology of a locally compact group and prove our statements by relating to the continuous bounded cohomology of the ambient group with coefficients in some induction module.
Cite this article
Marc Burger, Nicolas Monod, Bounded cohomology of lattices in higher rank Lie groups. J. Eur. Math. Soc. 1 (1999), no. 2, pp. 199–235
DOI 10.1007/S100970050007