Quantization of Drinfeld Zastava in type

  • Michael Finkelberg

    Independent University of Moscow, Russian Federation
  • Leonid Rybnikov

    Independent University of Moscow, Russian Federation

Abstract

Drinfeld Zastava is a certain closure of the moduli space of maps from the projective line to the Kashiwara flag scheme of the affine Lie algebra . We introduce an affine, reduced, irreducible, normal quiver variety which maps to the Zastava space bijectively at the level of complex points. The natural Poisson structure on the Zastava space can be described on in terms of Hamiltonian reduction of a certain Poisson subvariety of the dual space of a (nonsemisimple) Lie algebra. The quantum Hamiltonian reduction of the corresponding quotient of its universal enveloping algebra produces a quantization of the coordinate ring of . The same quantization was obtained in the finite (as opposed to the affine) case generically in [4]. We prove that, for generic values of quantization parameters, is a quotient of the affine Borel Yangian.

Cite this article

Michael Finkelberg, Leonid Rybnikov, Quantization of Drinfeld Zastava in type . J. Eur. Math. Soc. 16 (2014), no. 2, pp. 235–271

DOI 10.4171/JEMS/432