A vanishing theorem for twisted Alexander polynomials with applications to symplectic 4-manifolds

  • Stefan Friedl

    Universität Regensburg, Germany
  • Stefano Vidussi

    University of California, Riverside, United States

Abstract

In this paper we show that given any 3-manifold and any non-fibered class in there exists a representation such that the corresponding twisted Alexander polynomial is zero. We obtain this result by extending earlier work of ours and by combining this with recent results of Agol and Wise on separability of -manifold groups. This result allows us to completely classify symplectic -manifolds with a free circle action, and to determine their symplectic cones.

Cite this article

Stefan Friedl, Stefano Vidussi, A vanishing theorem for twisted Alexander polynomials with applications to symplectic 4-manifolds. J. Eur. Math. Soc. 15 (2013), no. 6, pp. 2027–2041

DOI 10.4171/JEMS/412