On the number of finite algebraic structures
Erhard Aichinger
Johannes Kepler University, Linz, AustriaPeter Mayr
Johannes Kepler University, Linz, AustriaRalph McKenzie
Vanderbilt University, Nashville, USA
Abstract
We prove that every clone of operations on a finite set , if it contains a Malcev operation, is finitely related – i.e., identical with the clone of all operations respecting for some finitary relation over . It follows that for a fixed finite set , the set of all such Malcev clones is countable. This completes the solution of a problem that was first formulated in 1980, or earlier: how many Malcev clones can finite sets support? More generally, we prove that every finite algebra with few subpowers has a finitely related clone of term operations. Hence modulo term equivalence and a renaming of the elements, there are only countably many finite algebras with few subpowers, and thus only countably many finite algebras with a Malcev term.
Cite this article
Erhard Aichinger, Peter Mayr, Ralph McKenzie, On the number of finite algebraic structures. J. Eur. Math. Soc. 16 (2014), no. 8, pp. 1673–1686
DOI 10.4171/JEMS/472