Isometries of quadratic spaces
Eva Bayer-Fluckiger
EFPL, Lausanne, Switzerland
![Isometries of quadratic spaces cover](/_next/image?url=https%3A%2F%2Fcontent.ems.press%2Fassets%2Fpublic%2Fimages%2Fserial-issues%2Fcover-jems-volume-17-issue-7.png&w=3840&q=90)
Abstract
Let be a global field of characteristic not 2, and let be an irreducible polynomial. We show that a non-degenerate quadratic space has an isometry with minimal polynomial if and only if such an isometry exists over all the completions of . This gives a partial answer to a question of Milnor.
Cite this article
Eva Bayer-Fluckiger, Isometries of quadratic spaces. J. Eur. Math. Soc. 17 (2015), no. 7, pp. 1629–1656
DOI 10.4171/JEMS/541