Symmetry of solutions of semilinear elliptic problems

  • Jean Van Schaftingen

    Université Catholique de Louvain, Belgium
  • Michel Willem

    Université Catholique de Louvain, Belgium

Abstract

We study symmetry properties of least energy positive or nodal solutions of semilinear elliptic problems with Dirichlet or Neumann boundary conditions. The proof is based on symmetrizations in the spirit of Bartsch, Weth and Willem (J. Anal. Math., 2005) together with a strong maximum principle for quasi-continuous functions of Ancona and an intermediate-value property for such functions.

Cite this article

Jean Van Schaftingen, Michel Willem, Symmetry of solutions of semilinear elliptic problems. J. Eur. Math. Soc. 10 (2008), no. 2, pp. 439–456

DOI 10.4171/JEMS/117