Symmetry of solutions of semilinear elliptic problems
Jean Van Schaftingen
Université Catholique de Louvain, BelgiumMichel Willem
Université Catholique de Louvain, Belgium
Abstract
We study symmetry properties of least energy positive or nodal solutions of semilinear elliptic problems with Dirichlet or Neumann boundary conditions. The proof is based on symmetrizations in the spirit of Bartsch, Weth and Willem (J. Anal. Math., 2005) together with a strong maximum principle for quasi-continuous functions of Ancona and an intermediate-value property for such functions.
Cite this article
Jean Van Schaftingen, Michel Willem, Symmetry of solutions of semilinear elliptic problems. J. Eur. Math. Soc. 10 (2008), no. 2, pp. 439–456
DOI 10.4171/JEMS/117