Étale motivic spectra and Voevodsky’s convergence conjecture

  • Tom Bachmann

    Johannes Gutenberg-Universität Mainz, Mainz, Germany
  • Elden Elmanto

    Harvard University, Cambridge, USA; University of Toronto, Toronto, Canada
  • Paul Arne Østvær

    University of Milan, Milan, Italy; University of Oslo, Oslo, Norway
Étale motivic spectra and Voevodsky’s convergence conjecture cover
Download PDF

A subscription is required to access this article.

Abstract

We prove a new convergence result for the slice spectral sequence, following work by Levine and Voevodsky. This verifies a derived variant of Voevodsky’s conjecture on convergence of the slice spectral sequence. This is, in turn, a necessary ingredient for our main theorem: a Thomason-style étale descent result for the Bott-inverted motivic sphere spectrum, which generalizes and extends previous étale descent results for special examples of motivic cohomology theories. Combined with first author’s étale rigidity results, we obtain a complete structural description of the étale motivic stable category.

Cite this article

Tom Bachmann, Elden Elmanto, Paul Arne Østvær, Étale motivic spectra and Voevodsky’s convergence conjecture. J. Eur. Math. Soc. (2024), published online first

DOI 10.4171/JEMS/1421