Étale motivic spectra and Voevodsky’s convergence conjecture
Tom Bachmann
Johannes Gutenberg-Universität Mainz, Mainz, GermanyElden Elmanto
Harvard University, Cambridge, USA; University of Toronto, Toronto, CanadaPaul Arne Østvær
University of Milan, Milan, Italy; University of Oslo, Oslo, Norway
Abstract
We prove a new convergence result for the slice spectral sequence, following work by Levine and Voevodsky. This verifies a derived variant of Voevodsky’s conjecture on convergence of the slice spectral sequence. This is, in turn, a necessary ingredient for our main theorem: a Thomason-style étale descent result for the Bott-inverted motivic sphere spectrum, which generalizes and extends previous étale descent results for special examples of motivic cohomology theories. Combined with first author’s étale rigidity results, we obtain a complete structural description of the étale motivic stable category.
Cite this article
Tom Bachmann, Elden Elmanto, Paul Arne Østvær, Étale motivic spectra and Voevodsky’s convergence conjecture. J. Eur. Math. Soc. (2024), published online first
DOI 10.4171/JEMS/1421