Eyring–Kramers law for Fokker–Planck type differential operators
Jean-François Bony
Université de Bordeaux, Talence, FranceDorian Le Peutrec
Université de Nantes, Nantes, FranceLaurent Michel
Université de Bordeaux, Talence, France
Abstract
We consider Fokker–Planck type differential operators associated with general Langevin processes admitting a Gibbs stationary distribution. Under assumptions ensuring suitable resolvent estimates, we prove Eyring–Kramers formulas for the bottom of the spectrum of these operators in the low temperature regime. Our approach is based on the construction of sharp Gaussian quasimodes and avoids supersymmetry or PT-symmetry assumptions.
Cite this article
Jean-François Bony, Dorian Le Peutrec, Laurent Michel, Eyring–Kramers law for Fokker–Planck type differential operators. J. Eur. Math. Soc. (2024), published online first
DOI 10.4171/JEMS/1461