Essential dimension of moduli of curves and other algebraic stacks
Patrick Brosnan
University of British Columbia, Vancouver, CanadaZinovy Reichstein
University of British Columbia, Vancouver, CanadaAngelo Vistoli
Scuola Normale Superiore, Pisa, Italy
Abstract
In this paper we consider questions of the following type. Let k be a base field and K/k be a field extension. Given a geometric object X over a field K (e.g. a smooth curve of genus g) what is the least transcendence degree of a field of definition of X over the base field k? In other words, how many independent parameters are needed to define X? To study these questions we introduce a notion of essential dimension for an algebraic stack. Using the resulting theory, we give a complete answer to the question above when the geometric objects X are smooth, stable or hyperelliptic curves. The appendix, written by Najmuddin Fakhruddin, answers this question in the case of abelian varieties.
Cite this article
Patrick Brosnan, Zinovy Reichstein, Angelo Vistoli, Essential dimension of moduli of curves and other algebraic stacks. J. Eur. Math. Soc. 13 (2011), no. 4, pp. 1079–1112
DOI 10.4171/JEMS/276