Energy and Morse index of solutions of Yamabe type problems on thin annuli
Mohammed Ben Ayed
Faculté des Sciences de Sfax, TunisiaKhalil El Mehdi
Université de Nouakchott, MauritaniaMohameden Ould Ahmedou
Universität Tübingen, GermanyFilomena Pacella
Università di Roma La Sapienza, Italy
Abstract
In this paper we consider the following Yamabe type family of problem in , on , where is an annulus-shaped domain of , , which becomes thinner when . We show that for every solution , the energy , as well as the Morse index tends to infinity as . Such a result is proved through a fine blow-up analysis of some appropriate scalings of solutions whose limiting profiles are regular as well as singular solutions of some elliptic problem on , a half space or an infinite strip. Our argument involves also a Liouville-type theorem for regular solutions on the infinite strip.
Cite this article
Mohammed Ben Ayed, Khalil El Mehdi, Mohameden Ould Ahmedou, Filomena Pacella, Energy and Morse index of solutions of Yamabe type problems on thin annuli. J. Eur. Math. Soc. 7 (2005), no. 3, pp. 283–304
DOI 10.4171/JEMS/29