# Quantization and centroidal Voronoi tessellations for probability measures on dyadic Cantor sets

### Mrinal Kanti Roychowdhury

University of Texas Rio Grande Valley, Edinburg, USA

## Abstract

Quantization of a probability distribution is the process of estimating a given probability by a discrete probability that assumes only a finite number of levels in its support. Centroidal Voronoi tessellations (CVT) are Voronoi tessellations of a region such that the generating points of the tessellations are also the centroids of the corresponding Voronoi regions. In this paper, we investigate the optimal quantization and the centroidal Voronoi tessellations with $n$ generators for a Borel probability measure $P$ on $\mathbb R$ supported by a dyadic Cantor set generated by two self-similar mappings with similarity ratios $r$, where $0 < r \leq \frac{5-\sqrt{17}}2$.

## Cite this article

Mrinal Kanti Roychowdhury, Quantization and centroidal Voronoi tessellations for probability measures on dyadic Cantor sets. J. Fractal Geom. 4 (2017), no. 2, pp. 127–146

DOI 10.4171/JFG/47