Baker domains and non-convergent deformations
Rodrigo Robles
Universidad Nacional Autonoma de México, Ciudad de Mexico, MexicoGuillermo Sienra
Universidad Nacional Autonoma de México, Ciudad de Mexico, Mexico
Abstract
For an entire transcendental function with a non-completely invariant Baker domain , we study the pinching process of paths in with certain restrictions, that we call Baker laminations. We show that if some curve in the Baker lamination of joins a point in the boundary of with infinity, then the deformation does not converge. Thus, in this particular case, the boundary of the space of deformations of is incomplete.
Cite this article
Rodrigo Robles, Guillermo Sienra, Baker domains and non-convergent deformations. J. Fractal Geom. 9 (2022), no. 1/2, pp. 1–22
DOI 10.4171/JFG/115