Quantum gauge symmetries in noncommutative geometry
Jyotishman Bhowmick
University of Oslo, NorwayFrancesco D'Andrea
Università di NapoliBiswarup Das
Indian Statistical Institute, KolkataLudwik Dąbrowski
SISSA, Trieste, Italy
Abstract
We discuss generalizations of the notion of i) the group of unitary elements of a (real or complex) finite-dimensional C*-algebra, ii) gauge transformations and iii) (real) automorphisms in the framework of compact quantum group theory and spectral triples. The quantum analogue of these groups are defined as universal (initial) objects in some natural categories. After proving the existence of the universal objects, we discuss several examples that are of interest to physics, as they appear in the noncommutative geometry approach to particle physics: in particular, the C*-algebras , and , describing the finite noncommutative space of the Einstein–Yang–Mills systems, and the algebras and , that appear in Chamseddine–Connes derivation of the Standard Model of particle physics coupled to gravity. As a byproduct, we identify a “free” version of the symplectic group (quaternionic unitary group).
Cite this article
Jyotishman Bhowmick, Francesco D'Andrea, Biswarup Das, Ludwik Dąbrowski, Quantum gauge symmetries in noncommutative geometry. J. Noncommut. Geom. 8 (2014), no. 2, pp. 433–471
DOI 10.4171/JNCG/161