Action de Hopf sur les opérateurs de Hecke modulaires tordus

  • Abhishek Banerjee

    Indian Institute of Science, Bangalore, India

Abstract

Let be a principal congruence subgroup. For each , we introduce the collection of modular Hecke operators twisted by . Then, is a right -module, where is the modular Hecke algebra introduced by Connes and Moscovici. Using the action of a Hopf algebra on , we define reduced Rankin–Cohen brackets on . Moreover carries an action of , where is the Hopf algebra of foliations of codimension 1. Finally, we consider operators between the levels , . We show that the action of these operators can be expressed in terms of a Hopf algebra .

Cite this article

Abhishek Banerjee, Action de Hopf sur les opérateurs de Hecke modulaires tordus. J. Noncommut. Geom. 9 (2015), no. 4, pp. 1155–1173

DOI 10.4171/JNCG/219