-homotopy invariants of corner skew Laurent polynomial algebras
Gonçalo Tabuada
MIT, Cambridge, USA and Universidade Nova de Lisboa, Portugal
Abstract
In this note we prove some structural properties of all the -homotopy invariants of corner skew Laurent polynomial algebras. As an application, we compute the mod- algebraic -theory of Leavitt path algebras using solely the kernel/cokernel of the incidence matrix. This leads naturally to some vanishing and divisibility properties of the -theory of these algebras.
Cite this article
Gonçalo Tabuada, -homotopy invariants of corner skew Laurent polynomial algebras. J. Noncommut. Geom. 11 (2017), no. 4, pp. 1627–1643
DOI 10.4171/JNCG/11-4-12