Graded twisting of comodule algebras and module categories
Julien Bichon
Université Clermont Auvergne, Aubière, FranceSergey Neshveyev
University of Oslo, NorwayMakoto Yamashita
Ochanomizu University, Tokyo, Japan
Abstract
Continuing our previous work on graded twisting of Hopf algebras and monoidal categories, we introduce a graded twisting construction for equivariant comodule algebras and module categories. As an example we study actions of quantum subgroups of on and show that in most cases the corresponding invariant rings are invariant rings for the action of a classical subgroup . As another example we study Poisson boundaries of graded twisted categories and show that under the assumption of weak amenability they are graded twistings of the Poisson boundaries.
Cite this article
Julien Bichon, Sergey Neshveyev, Makoto Yamashita, Graded twisting of comodule algebras and module categories. J. Noncommut. Geom. 12 (2018), no. 1, pp. 331–368
DOI 10.4171/JNCG/278