JournalsjncgVol. 3, No. 3pp. 419–446

Représentations non unitaires, morphisme de Baum–Connes et complétions inconditionnelles

  • Maria Paula Gomez Aparicio

    Institut de Mathématiques de Jussieu, Paris
Représentations non unitaires, morphisme de Baum–Connes et complétions inconditionnelles cover
Download PDF

Abstract

We show that the Baum–Connes morphism twisted by a non-unitary representation, defined in [GA08], is an isomorphism for a large class of groups satisfying the Baum–Connes conjecture. Such class contains all the real semi-simple Lie groups, all hyperbolic groups and many infinite discrete groups having Kazhdan’s property (T). We define a tensorisation by a non-unitary finite dimensional representation on the left-hand side of the Baum–Connes morphism and we show that its analogue in K-theory must be defined on the K-theory of the twisted group algebras introduced in [GA07b].

Cite this article

Maria Paula Gomez Aparicio, Représentations non unitaires, morphisme de Baum–Connes et complétions inconditionnelles. J. Noncommut. Geom. 3 (2009), no. 3, pp. 419–446

DOI 10.4171/JNCG/42