Transfer matrix analysis of non-Hermitian Hamiltonians: asymptotic spectra and topological eigenvalues

  • Lars Koekenbier

    Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
  • Hermann Schulz-Baldes

    Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
Transfer matrix analysis of non-Hermitian Hamiltonians: asymptotic spectra and topological eigenvalues cover
Download PDF

This article is published open access under our Subscribe to Open model.

Abstract

Transfer matrix techniques are used to provide a new proof of Widom’s results on the asymptotic spectral theory of finite block Toeplitz matrices. Furthermore, a rigorous treatment of the skin effect, spectral outliers, the generalized Brillouin zone and the bulk-boundary correspondence in such systems is given. This covers chiral Hamiltonians with topological eigenvalues close to zero, but no line-gap.

Cite this article

Lars Koekenbier, Hermann Schulz-Baldes, Transfer matrix analysis of non-Hermitian Hamiltonians: asymptotic spectra and topological eigenvalues. J. Spectr. Theory 14 (2024), no. 4, pp. 1563–1622

DOI 10.4171/JST/524