Transfer matrix analysis of non-Hermitian Hamiltonians: asymptotic spectra and topological eigenvalues
Lars Koekenbier
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, GermanyHermann Schulz-Baldes
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
Abstract
Transfer matrix techniques are used to provide a new proof of Widom’s results on the asymptotic spectral theory of finite block Toeplitz matrices. Furthermore, a rigorous treatment of the skin effect, spectral outliers, the generalized Brillouin zone and the bulk-boundary correspondence in such systems is given. This covers chiral Hamiltonians with topological eigenvalues close to zero, but no line-gap.
Cite this article
Lars Koekenbier, Hermann Schulz-Baldes, Transfer matrix analysis of non-Hermitian Hamiltonians: asymptotic spectra and topological eigenvalues. J. Spectr. Theory 14 (2024), no. 4, pp. 1563–1622
DOI 10.4171/JST/524