Pólya's conjecture fails for the fractional Laplacian
Mateusz Kwaśnicki
Wrocław University of Science and Technology, PolandRichard S. Laugesen
University of Illinois, Urbana, USABartłomiej A. Siudeja
Eugene, USA
Abstract
The analogue of Pólya's conjecture is shown to fail for the fractional Laplacian on an interval in 1-dimension, whenever . The failure is total: every eigenvalue lies below the corresponding term of the Weyl asymptotic.
In 2-dimensions, the fractional Pólya conjecture fails already for the first eigenvalue, when .
Cite this article
Mateusz Kwaśnicki, Richard S. Laugesen, Bartłomiej A. Siudeja, Pólya's conjecture fails for the fractional Laplacian. J. Spectr. Theory 9 (2019), no. 1, pp. 127–135
DOI 10.4171/JST/242