Polynomial upper bound on interior Steklov nodal sets
Bogdan Georgiev
Max Planck Institute for Mathematics, Bonn, GermanyGuillaume Roy-Fortin
École de Technologie Supérieure, Montréal, Canada

Abstract
We study solutions of uniformly elliptic PDE with Lipschitz leading coefficients and bounded lower order coefficients. We extend previous results of A. Logunov ([9]) concerning nodal sets of harmonic functions and, in particular, prove polynomial upper bounds on interior nodal sets of Steklov eigenfunctions in terms of the corresponding eigenvalue .
Cite this article
Bogdan Georgiev, Guillaume Roy-Fortin, Polynomial upper bound on interior Steklov nodal sets. J. Spectr. Theory 9 (2019), no. 3, pp. 897–919
DOI 10.4171/JST/266