Existence of metrics maximizing the first eigenvalue on non-orientable surfaces

  • Henrik Matthiesen

    University of Chicago, USA; Max Planck Institute for Mathematics, Bonn, Germany
  • Anna Siffert

    Westfälische Wilhelms-Universität Münster, Germany
Existence of metrics maximizing the first eigenvalue on non-orientable surfaces cover
Download PDF

This article is published open access under our Subscribe to Open model.

Abstract

We prove the existence of metrics maximizing the first eigenvalue normalized by area on closed, non-orientable surfaces assuming two spectral gap conditions. These spectral gap conditions are proved by the authors in [21].

Cite this article

Henrik Matthiesen, Anna Siffert, Existence of metrics maximizing the first eigenvalue on non-orientable surfaces. J. Spectr. Theory 11 (2021), no. 3, pp. 1279–1296

DOI 10.4171/JST/372