Existence of metrics maximizing the first eigenvalue on non-orientable surfaces
Henrik Matthiesen
University of Chicago, USA; Max Planck Institute for Mathematics, Bonn, GermanyAnna Siffert
Westfälische Wilhelms-Universität Münster, Germany
Abstract
We prove the existence of metrics maximizing the first eigenvalue normalized by area on closed, non-orientable surfaces assuming two spectral gap conditions. These spectral gap conditions are proved by the authors in [21].
Cite this article
Henrik Matthiesen, Anna Siffert, Existence of metrics maximizing the first eigenvalue on non-orientable surfaces. J. Spectr. Theory 11 (2021), no. 3, pp. 1279–1296
DOI 10.4171/JST/372