SL-tilings of the torus, Coxeter–Conway friezes and Farey triangulations
Sophie Morier-Genoud
Université Pierre et Marie Curie, Paris, FranceValentin Ovsienko
U.F.R. Sciences Exactes et Naturelles, Reims, FranceSerge Tabachnikov
Penn State University, University Park, United States

Abstract
The notion of SL-tiling is a generalization of that of classical Coxeter–Conway frieze pattern. We classify doubly antiperiodic SL-tilings that contain a rectangular domain of positive integers. Every such SL-tiling corresponds to a pair of frieze patterns and a unimodular -matrix with positive integer coefficients. We relate this notion to triangulated -gons in the Farey graph.
Cite this article
Sophie Morier-Genoud, Valentin Ovsienko, Serge Tabachnikov, SL-tilings of the torus, Coxeter–Conway friezes and Farey triangulations. Enseign. Math. 61 (2015), no. 1/2, pp. 71–92
DOI 10.4171/LEM/61-1/2-4