Estimates for Zero Loci of Bernstein–Sato Ideals
Nero Budur
KU Leuven, Leuven, Belgium; BCAM, Bilbao, SpainRobin van der Veer
KU Leuven, Leuven, BelgiumAlexander Van Werde
KU Leuven, Leuven, Belgium; Eindhoven University of Technology, MB Eindhoven, Netherlands
Abstract
We give estimates for the zero loci of Bernstein–Sato ideals. An upper bound is proved as a multivariate generalisation of the upper bound by Lichtin for the roots of Bernstein–Sato polynomials. The lower bounds generalise the fact that log-canonical thresholds, small jumping numbers of multiplier ideals, and their real versions provide roots of Bernstein–Sato polynomials.
Cite this article
Nero Budur, Robin van der Veer, Alexander Van Werde, Estimates for Zero Loci of Bernstein–Sato Ideals. Publ. Res. Inst. Math. Sci. 60 (2024), no. 3, pp. 607–628
DOI 10.4171/PRIMS/60-3-7